翻訳と辞書 |
Perfect complex : ウィキペディア英語版 | Perfect complex In algebra, a perfect complex of modules over a commutative ring ''A'' is an object in the derived category of ''A''-modules that is quasi-isomorphic to a bounded complex of finite projective ''A''-modules. A perfect module is a module that is perfect when it is viewed as a complex concentrated at degree zero. For example, if ''A'' is Noetherian, a module over ''A'' is perfect if and only if it has finite projective dimension. A compact object in the ∞-category of (say right) module spectra over a ring spectrum is often called perfect; 〔http://www.math.harvard.edu/~lurie/281notes/Lecture19-Rings.pdf〕 see also module spectrum. == See also ==
*Hilbert–Burch theorem *Dualizable object
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Perfect complex」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|